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OVERVIEW Last week, we looked at some problems with the MODEL-
THEORETIC account of LOGICAL CONSEQUENCE.

This week, we will look at one of the main alternatives to the
model-theoretic account: the PROOF-THEORETIC account.

A!er setting out the idea, and its attractions, I'll look at the
problem of LOGICAL RULES, where I'll talk about another

solution to the problem of LOGICAL CONSTANTS.

I'll then look at a problem raised by Arthur Prior that is
sometimes held to be devastating for proof-theoretic

accounts: the problem of TONK.

PROOF-THEORETIC
CONSEQUENCE

To a first approximation, the PROOF-THEORETIC account is
the view that φ is a logical consequence of a set of premises

Γ IFF there is a PROOF of φ from the members of Γ.

What is a proof? The rough idea is that φ can be derived
from Γ by means of a series of applications of logical RULES.



Think of the introduction and elimination rules familiar to
you from natural deduction:

∧-Intro.

From φ and ψ, you can infer φ∧ψ.

∧-Elim.

From φ∧ψ, you can infer either of φ and ψ.

The approach has various attractions. First, insofar as the
logical rules or axioms can be specified formally, it is

FORMAL.

Second, inasmuch as the various rules or axioms are
intuitively compelling, it promises an account of logical

consequence that doesn't OVERGENERATE.

Third, it also seems well-placed to avoid analogues of the
CONCEPTUAL INADEQUACY objection pressed by

Etchemendy against the model-theoretic account.

For instance, insofar as the rules or axioms are truth-
preserving in all possible worlds, it captures the idea that
logically valid arguments are necessarily truth-preserving.

And inasmuch as we can know a priori the rules are truth-
preserving, it seems to capture the idea that we can know a

priori that logically valid arguments are truth-preserving.

The proof-theoretic approach has various merits, then. And
it was widely held in the early 20th century. But it fell out of

favour in and around the 1930s.



The main reason for this was Gödel's first incompleteness
theorem, which tells us that every consistent formal system

of sufficient strength is INCOMPLETE, i.e. that

Γ ⊨S φ ⇏ Γ ⊢S φ.

This suggests that, for each such system, there is a logically
valid argument whose conclusion cannot be derived from its

premises in that system.

This in turn suggests that the proof-theoretic account
UNDERGENERATES: that there are logically valid arguments

whose conclusions cannot be derived from its premises.

But this is too quick. There are various responses the
proponent of the proof-theoretic approach can make.

First, they can deny that, for each consistent formal system
of sufficient strength, there is a logically valid argument

whose conclusion cannot be derived from its premises in
that system.

This will be the response of anyone who thinks that the sorts
of formal systems Gödel's theorem concerns — involving

second-order quantification — are not logical.

But even if they accept that, for each consistent formal
system of sufficient strength, there is a logically valid

argument whose conclusion cannot be derived from its
premises in that system ...

... it does not follow that there is a logically valid argument
whose conclusion cannot be derived from its premises in any

system whatsoever.

To think otherwise is to fall prey to a simple SCOPE fallacy —
to infer that ∃x∀y Rxy from ∀y∃x Rxy.



Second, then, proponents of the proof-theoretic approach
can say that a conclusion φ is a logical consequence of a set
of premises Γ IFF there is a proof of φ from the members of

Γ in some system (of a certain sort) or other.

But this too faces its problems. First, there is the problem of
demarcating the LOGICAL RULES. The other is a problem

raised by Arthur Prior, the problem of TONK.
LOGICAL RULES

How, if at all, does the proof-theoretic account draw a
distinction between our old pals, ARGUMENT 1 and

ARGUMENT 4?

ARGUMENT 1

1. Someone smokes and drinks
2. So, someone smokes and someone drinks

ARGUMENT 4

1. John is a bachelor
2. So, John is not married

The conclusion of ARGUMENT 1 can be derived from the
premise by applications of ∃-Elim., ∧-Elim., ∧-Intro., and ∃-

Intro.

But the conclusion of ARGUMENT 4 can be derived from the
premise by a single application of the following rule: from α

is a bachelor, you can infer α is not married.

This latter rule is just as intuitively compelling as the others.
So on what grounds, if any, can we distinguish between the

two arguments?



The obvious solution is to say that the rules employed in
deriving the conclusion of ARGUMENT 1 from its premise are

rules governing the use of logical expressions ...

... while the rule employed in deriving the conclusion of
ARGUMENT 4 from its premise is not a rule governing the use

of a logical expression.

But now we are confronted with the problem of LOGICAL
CONSTANTS: on what grounds, if any, are we to distinguish
logical expressions (or constants) from the nonlogical ones?

Last week, we looked at the attempt to solve the problem of
logical constants in terms of PERMUTATION INVARIANCE.

A different approach, one that fits well with the proof-
theoretic picture, appeals to the notion of PURELY

INFERENTIAL rules.

To see the idea, consider the introduction and elimination
rules for '∧' again:

∧-Intro.

From φ and ψ, you can infer φ ∧ ψ.

∧-Elim.

From φ ∧ ψ, you can infer either of φ and ψ.

Plausibly, these rules characterise the meaning of '∧': in
order to understand '∧', it is enough to know that it is

governed by these rules.



Moreover, the rules are purely inferential, at least in the
sense that they govern INFERENTIAL TRANSITIONS between

thoughts (or sentences that express them).

Contrast them with the following introduction rule for the
sentence, It is raining: if it is raining, one may infer It is

raining.

This rule is not purely inferential. It does not govern
inferential transitions between thoughts (or sentences that

express them).

This suggests that we can characterise the logical
expressions as those whose meaning can be characterised in

terms of purely inferential rules.

It is not clear, however, how this is supposed to rule out
expressions such as 'is a bachelor'. Consider the following

rules:

bachelor-Intro.

From α is an unmarried man, you can infer α is a bachelor.

bachelor-Elim.

From α is a bachelor, you can infer α is an unmarried man.
It is plausible that, in order to understand 'is a bachelor', it is

enough to know that it is governed by these rules.

Moreover, if governing inferential transitions is enough to
make a rule purely inferential, these are as purely inferential

as ∧-Intro. and ∧-Elim.



One option here is to insist that it is merely a necessary
condition on a rule's being purely inferential that it govern

inferential transitions.

In addition, perhaps, we might insist that a rule can only be
purely inferential if every sign that appears in the
formulation of the rule, apart from the one being

characterised, is STRUCTURAL or SCHEMATIC.

Whereas the permutation invariance account draws on the
idea that logic is TOPIC-NEUTRAL, and insensitive to the

particular identities of objects ...

... this draws on the idea that logic is NORMATIVE for
thinking as such, specifying rules for correct use that can be
grasped by anyone who knows what it is to think or reason.

But even if something like this deals with ARGUMENT 4, it
cannot be the whole story...

PROBLEM OF TONK

The problem with ARGUMENT 4 is that, intuitively, it is not
logically valid, and it is not obvious how it can be classified

as such on the proof-theoretic account.

But ARGUMENT 4 is, at least, truth-preserving. And perhaps
it's not entirely out of the question that it is logically valid

a!er all.

Arthur Prior famously raised a problem for which no such
move is available for proponents of the proof-theoretic

account — the problem of TONK.



To illustrate the problem, he asks us to consider the
connective, tonk, characterised in terms of the following

introduction and elimination rules:

tonk-Intro.

From φ, you can infer φ tonk ψ.

tonk-Elim.

From φ tonk ψ, you can infer φ.

By means of tonk, it seems we can show that the proof-
theoretic account classifies as logically valid arguments

which aren't even truth-preserving!

ARGUMENT 5

1. Theresa May is the Prime Minister tonk 1 + 1 = 3
2. So, 1 + 1 = 3

According to the proof-theoretic account, the conclusion of
ARGUMENT 5 is a logical consequence of its premise IFF

there is a proof of that conclusion from that premise in some
system or other.

And the problem is that there is a proof of that conclusion
from that premise in some system or other: namely, in

systems that contain tonk-Intro. and tonk-Elim.!

(Notice, by the way, that tonk-Intro. and tonk-Elim. both
appear to be as purely inferential as ∧-Intro. and ∧-Elim.)

(So even if an account of logical constants in terms of the
notion of a purely inferential rule is workable, it doesn't

seem to help here.)



One solution is to say that the conclusion of an argument is
a logical consequence of a set of premises IFF there is a

proof of that conclusion from that premise in some SOUND
system or other.

But to say that a system is sound is just to say that a
conclusion can be derived from a set of premises in that

system only if that conclusion is a logical consequence of
those premises.

This leads Etchemendy, among others, to despair that a
proof-theoretic account of logical consequence either

massively overgenerates or is hopelessly circular.

This is overly pessimistic. What the problem shows is that if
logical consequence is to be identified with derivability in

some system or other, we need some criterion of admissible
systems.

But soundness is not the only criterion available to us. Here
are two alternative criteria:

First, following Nuel Belnap, we can identify logical
consequence with derivability in some or other conservative

extension of our usual systems, where ...

... the addition of a connective to a system is CONSERVATIVE
IFF every formula that can be proved in the new system, and

that doesn't contain the connective, can also be proved in
the old system.

Second, following Michael Dummett, we can identify logical
consequence with derivability in some or other system in

which the introduction and elimination rules for each
constant are in harmony, where ...

... the introduction and elimination rules for a connective are
in HARMONY IFF (roughly) the elimination rules do not allow

us to derive anything more or less than is required for its
introduction.



Think again of ∧-Intro. and ∧-Elim. again. What we can infer
by eliminating ∧ is exactly what we need in order to

introduce it.

Dag Prawitz offers a different response to the problem of
tonk. It's similar to Dummett's harmony-based approach ...

... but avoids identifying logical consequence with
derivability in a given system altogether. I'll just give a sketch

of the basic ideas.

Prawitz offers a useful analogy. Consider the following
expressions: '1', '8', '1456-345', 'the largest even number less

than 10', 'the largest even number'.

Checking that certain of these expressions denote a natural
number is trivial: they are in CANONICAL form — here,

decimal notation.

For the other expressions, however, whether or not they
denote a natural number depends on whether they can be

TRANSFORMED into canonical form.

In some cases, they can. '1456-345' can be transformed into
'1111', and 'the largest even number less than 10' can be

transformed into '8'.

In one case, however, they can't: 'the largest even number'.
In this case, the expression does not denote a natural

number.

Similarly, according to Prawitz, certain arguments are
TRIVIALLY logically valid. These are those that only employ

introduction rules.



The reason these are trivially logically valid, according to
Prawitz, is that introduction rules are SELF-JUSTIFYING.

In other words, it is part of the meaning of a logical
expression that its introduction rule is logically valid.

Other arguments — those that employ elimination rules —
are logically valid only if they can be TRANSFORMED into

arguments that are trivially logically valid.

What about tonk? If introduction rules are self-justifying,
doesn't it follow that arguments that only employ tonk-

Intro. are logically valid?

Yes! According to Prawitz, what the case of tonk shows is
that we cannot stipulate just any old elimination rules.

In order for an elimination rule to be justified, we have to be
able to transform any argument that uses it into one that

only uses introduction rules.

And the problem with tonk is that there is no way of
transforming arguments that employ its elimination rule

into such trivially logically valid arguments.
SUMMARY This week, we've seen what the account is, its merits, and

two problems: the problem of LOGICAL RULES and the
problem of TONK.



I hope to say a little more next week about the story
proponents of the proof-theoretic account can tell about the

EPISTEMIC guarantee logically valid arguments provide.

But the main topic will be LOGICAL PLURALISM, the idea
that there is more than one correct logic.


